Published Date : 2023-08-19
Published Date : 2023-08-19
Updated On : 2024-06-06
Pages : 150
Thelansis’s “ABCC6 Deficiency Market Outlook, Epidemiology, Competitive Landscape, and Market Forecast Report – 2023 To 2033" covers disease overview, epidemiology, drug utilization, prescription share analysis, competitive landscape, clinical practice, regulatory landscape, patient share, market uptake, market forecast, and key market insights under the potential ABCC6 Deficiency treatment modalities options for eight major markets (USA, Germany, France, Italy, Spain, UK, Japan, and China).
The ATP-binding cassette (ABC) transporters represent an extensive family of membrane efflux transporters comprising 48 distinct members. These transporters exhibit diverse substrate specificities, including lipids, peptides, polysaccharides, organic molecules, and ions. Phylogenetic analysis reveals that ABCC6 shares the highest sequence homology with ABCC1 and ABCC2, which are recognized as multidrug resistance transporters and are known to transport a variety of substrates relevant to clinically significant pharmaceutical agents. The endogenous substrate for ABCC6 remains unidentified. Mutations in ABCC6 are the genetic basis for the rare disorder pseudoxanthoma elasticum (PXE). PXE is an autosomal recessive condition characterized by ectopic mineralization of the skin, retina, and arteries, leading to skin papules, blindness, and arterial sclerosis. Histologically, PXE is defined by the calcification of elastic fibers. Infants with ABCC6 deficiency may present with Generalized Arterial Calcification (GACI) Type 2, which resembles GACI Type 1, the infantile form of ENPP1 deficiency. In older individuals, ABCC6 deficiency manifests as PXE, characterized by pathological mineralization in blood vessels and soft tissues, clinically impacting the skin, eyes, and vascular system.
North America- the United States and Canada
Europe- EU5 (Germany, France, Italy, Spain, and the United Kingdom)
Other countries- Japan & China
This section of the study covers country-specific current clinical practice, the standard of care, and significant limitations around addressing the unmet needs. Retrospective analysis and bench-marking of clinical study outcomes are presented in terms of Pre-treatment & post-treatment clinical and demographic patient characteristics. Essentially, this section will cover the evolution of the current competitive landscape and its impact on the future treatment paradigm.
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs
- Data Inputs with sourcing
- Market Event and Product Event
- Country-specific Forecast Model
- Market uptake and patient share uptake
- Attribute Analysis
- Analog Analysis
- Disease burden and pricing scenario
- Summary and Insights
Optimization of cash flow/ revenue flow concerning all fixed and variable investments throughout the product development process. The rate of return on an investment is a critical indicator to ensure the profitability and break-even of the project.
The competitive landscape includes country-specific approved as well as pipeline therapies. Any asset/product-specific designation or review such as Orphan drug designation, Fast track, Priority Review, Breakthrough Therapy Designation, Rare Pediatric Disease Designation, and Accelerated Approval are tracked and supplemented with analyst commentary.
Detailed clinical trial data analysis and critical product positioning include trial design, primary outcomes, secondary outcomes, dosing and schedules, inclusion and exclusion criteria, recruitment status and essentially covers the reported adverse events. Majorly the trial analysis helps determine the potential of the critical assets and their probable filing and launch date.
This report presents the most important clinical unmet needs in the treatment, according to Thelansis research and analysis. Other essential unmet needs identified through our study include decreased cost burden on patients, improved administration convenience, and improved patient compliance.
S. no | Asset | Company | Stage |
1 | INZ-701 | Inozyme Pharma | Phase 1/2 |
KOLs across 8 MM market from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs.
COUNTRY | No. Of KOLs |
USA | 17 |
GERMANY | 4 |
UK | 4 |
SPAIN | 3 |
FRANCE | 2 |
ITALY | 3 |
JAPAN | 3 |
CHINA | 4 |
Data Inputs with sourcing, Market Event, Product Event, Country specific Forecast Model, Market uptake and patient share uptake, Attribute Analysis, Analog Analysis, Disease burden, and pricing scenario, Summary, and Insights.
1. ABCC6 Deficiency – Key Findings Summary |
1.1. Clinical findings |
1.1.1. Disease overview |
1.1.2. Therapeutic practices |
1.1.3. Future outlook |
1.2. Commercial findings |
1.2.1. ABCC6 Deficiency market scenario 2023 |
1.2.2. ABCC6 Deficiency market scenario 2028 |
1.2.3. ABCC6 Deficiency market scenario 2033 |
2. ABCC6 Deficiency Overview |
2.1. Disease Introduction |
2.2. Pathophysiology |
2.3. Signs and Symptoms |
2.4. Risk Factors |
2.5. Etiology |
2.6. Classification |
2.7. Pathogenesis |
2.8. Diagnosis |
2.9. Complications |
2.10. Treatment Algorithm |
2.10.1. Treatment in US (guidelines) |
2.10.2. Treatment in EU-5 (guidelines) |
2.10.3. Treatment in Japan (guidelines) |
2.10.4. Treatment in China (guidelines) |
2.11. Treatment Goals for ABCC6 Deficiency |
2.12. Referral Patterns |
2.12.1. Referral Scenario in US |
2.12.2. Referral Scenario in EU-5 |
2.12.3. Referral Scenario in Japan |
2.12.4. Referral Scenario in China |
2.13. ABCC6 Deficiency Prognosis |
2.14. Healthcare burden |
2.14.1. Healthcare burden in US |
2.14.2. Healthcare burden in EU-5 |
2.14.3. Healthcare burden in Japan |
2.14.4. Healthcare burden in China |
2.15. Unmet Needs in ABCC6 Deficiency management |
2.16. Market Opportunity for ABCC6 Deficiency |
2.17. KOL Comments on current and upcoming/expected treatment practices in ABCC6 Deficiency |
3. Epidemiology |
3.1. Epidemiology Overview |
3.2. Epidemiology by Geography |
3.2.1. ABCC6 Deficiency Epidemiology in US (2023-2033) |
3.2.1.1. Incidence of ABCC6 Deficiency |
3.2.1.2. Diagnosed cases |
3.2.1.3. Treatable Patient Pool |
3.2.1.4. Epidemiology Trends |
3.2.2. ABCC6 Deficiency Epidemiology in EU-5 (2023-2033) |
3.2.2.1. Incidence of ABCC6 Deficiency |
3.2.2.2. Diagnosed cases |
3.2.2.3. Treatable Patient Pool |
3.2.2.4. Epidemiology Trends |
3.2.3. ABCC6 Deficiency Epidemiology in Japan (2023-2033) |
3.2.3.1. Incidence of ABCC6 Deficiency |
3.2.3.2. Diagnosed cases |
3.2.3.3. Treatable Patient Pool |
3.2.3.4. Epidemiology Trends |
3.2.4. ABCC6 Deficiency Epidemiology in China (2023-2033) |
3.2.4.1. Incidence of ABCC6 Deficiency |
3.2.4.2. Diagnosed cases |
3.2.4.3. Treatable Patient Pool |
3.2.4.4. Epidemiology Trends |
3.3. Epidemiology Trends (World-wide) |
4. Market Outlook |
4.1. US ABCC6 Deficiency Market Forecast 2023-2033 |
4.1.1. Market Progression (Futuristic) |
4.1.2. Market Trends and Expectations |
4.1.2.1. Worst case scenario |
4.1.2.2. Base Case Scenario |
4.1.2.3. Best Case Scenario |
4.1.3. Drivers and Barriers |
4.2. UK ABCC6 Deficiency Market Forecast 2023-2033 |
4.2.1. Market Progression (Futuristic) |
4.2.2. Market Trends and Expectations |
4.2.2.1. Worst case scenario |
4.2.2.2. Base Case Scenario |
4.2.2.3. Best Case Scenario |
4.2.3. Drivers and Barriers |
4.3. France ABCC6 Deficiency Market Forecast 2023-2033 |
4.3.1. Market Progression (Futuristic) |
4.3.2. Market Trends and Expectations |
4.3.2.1. Worst case scenario |
4.3.2.2. Base Case Scenario |
4.3.2.3. Best Case Scenario |
4.3.3. Drivers and Barriers |
4.4. Germany ABCC6 Deficiency Market Forecast 2023-2033 |
4.4.1. Market Progression (Futuristic) |
4.4.2. Market Trends and Expectations |
4.4.2.1. Worst case scenario |
4.4.2.2. Base Case Scenario |
4.4.2.3. Best Case Scenario |
4.4.3. Drivers and Barriers |
4.5. Italy ABCC6 Deficiency Market Forecast 2023-2033 |
4.5.1. Market Progression (Futuristic) |
4.5.2. Market Trends and Expectations |
4.5.2.1. Worst case scenario |
4.5.2.2. Base Case Scenario |
4.5.2.3. Best Case Scenario |
4.5.3. Drivers and Barriers |
4.6. Spain ABCC6 Deficiency Market Forecast 2023-2033 |
4.6.1. Market Progression (Futuristic) |
4.6.2. Market Trends and Expectations |
4.6.2.1. Worst case scenario |
4.6.2.2. Base Case Scenario |
4.6.2.3. Best Case Scenario |
4.6.3. Drivers and Barriers |
4.7. Japan ABCC6 Deficiency Market Forecast 2023-2033 |
4.7.1. Market Progression (Futuristic) |
4.7.2. Market Trends and Expectations |
4.7.2.1. Worst case scenario |
4.7.2.2. Base Case Scenario |
4.7.2.3. Best Case Scenario |
4.7.3. Drivers and Barriers |
4.8. China ABCC6 Deficiency Market Forecast 2023-2033 |
4.8.1. Market Progression (Futuristic) |
4.8.2. Market Trends and Expectations |
4.8.2.1. Worst case scenario |
4.8.2.2. Base Case Scenario |
4.8.2.3. Best Case Scenario |
4.8.3. Drivers and Barriers |
4.9. Key Expected Milestones (world-wide) Impacting the Market |
5. Competitive Landscape |
5.1. Pipeline Therapies Overview |
5.1.1. Phase III Therapies |
5.1.1.1. Current Status |
5.1.1.2. Trial details, results |
5.1.1.3. Approval Timeline |
5.1.1.4. Likelihood of approval |
5.1.1.5. Expected Product Positioning |
5.1.1.2. All other Phase III Therapies ….. |
5.1.1.3. Attribute Analysis of Phase III molecules |
5.1.2. Phase II and Phase I/II Therapies |
5.1.2.1. Current Status |
5.1.2.2. Trial details, results |
5.1.2.3. Approval Timelines |
5.1.3. List of active Pre-clinical Therapies |
5.1.3.1. Status in ABCC6 Deficiency |
5.1.3.2. Company positioning |
5.1.3.2. All other pre-clinical therapies |
5.1.4. List of Inactive/discontinued assets |
5.1.4.1. Business impact of discontinuations on current pipeline |
5.1.5. Potential winners from ABCC6 Deficiency Pipeline |
5.1.5.1. Potential Blockbusters across the pipeline |
6. Regulatory/Approval Scenario |
6.1. Regulatory/Approval Framework in US |
6.1.1. Policy Framework |
6.1.2. Payer Expectations |
6.2. Regulatory/Approval Framework in UK |
6.2.1. Policy Framework |
6.2.2. Payer Expectations |
6.3. Regulatory/Approval Framework in France |
6.3.1. Policy Framework |
6.3.2. Payer Expectations |
6.4. Regulatory/Approval Framework in Germany |
6.4.1. Policy Framework |
6.4.2. Payer Expectations |
6.5. Regulatory/Approval Framework in Italy |
6.5.1. Policy Framework |
6.5.2. Payer Expectations |
6.6. Regulatory/Approval Framework in Spain |
6.6.1. Policy Framework |
6.6.2. Payer Expectations |
6.7. Regulatory/Approval Framework in Japan |
6.7.1. Policy Framework |
6.7.2. Payer Expectations |
6.8. Regulatory/Approval Framework in China |
6.8.1. Policy Framework |
6.8.2. Payer Expectations |
7. Clinical Trial Assessment – Current and Future Paradigm |
7.1. Distribution of Primary Endpoints across trials |
7.2. Distribution of Secondary Endpoints across trials |
7.3. Evolution and acceptance of surrogate endpoints |
7.4. Key Investigator initiated trials |
7.5. Attrition analysis |
7.5.1. Suspended/Discontinued Assets |
7.5.2. Failed Trials, Reasons and Business Impact |
7.5.3. Terminated Trials, Reasons and Business Impact |
7.5.4. Withdrawn Trials, Reasons and Business Impact |
7.6. Trial enrollment scenario and challenges |
7.7. Clinical Trial Guidance (across geographies) |
8. Thelansis Commentary |
8.1. Key Unmet needs in ABCC6 Deficiency |
8.2. Possible Best-case Clinical Trial Strategies |
8.3. Possible Best Case Targeted Product Profile (TPP) |
8.4. Possible Best-case Market positioning strategies |
8.5. Possible Best-case Market Access Strategies |
8.6. Possible Best-case LCM Strategies |
8.7. Overall View on ABCC6 Deficiency Market in Dollar Value |
9. Report Methodology |
9.1. Secondary research |
9.2. Primary research |
9.3. Data collation |
9.4. Insight Generation |
10. About Thelansis |
10.1. Our Capabilities |
10.2. Our Services |
10.3. Our Contacts |
10.4. Disclaimer |