Published Date : 2023-03-21
Published Date : 2023-03-21
Updated On : 2024-01-12
Pages : 152
Thelansis’s “Wet Age-Related Macular Degeneration (AMD) Market Outlook, Epidemiology, Competitive Landscape, and Market Forecast Report – 2023 To 2033" covers disease overview, epidemiology, drug utilization, prescription share analysis, competitive landscape, clinical practice, regulatory landscape, patient share, market uptake, market forecast, and key market insights under the potential Wet Age-Related Macular Degeneration (AMD) treatment modalities options for eight major markets (USA, Germany, France, Italy, Spain, UK, Japan, and China).
The most common cause of visual impairment among elderly patients in developed countries is wet age-related macular degeneration (ARMD), which is characterized by the growth of choroidal neovascularization (CNV) driven by vascular endothelial growth factor (VEGF). CNV can result in bleeding under the retina, detachment or atrophy of the retinal pigment epithelium (RPE), or fluid accumulation under the retina or RPE, leading to vision loss. Wet ARMD differs from dry ARMD by the presence of CNV, where new blood vessels from the choroid invade Bruch's membrane and proliferate either between the membrane and RPE or in the subretinal space. The multifactorial nature of wet ARMD includes numerous risk factors such as older age, elevated total serum cholesterol, micronutrient deficiency, smoking, family history, hypertension, cardiovascular disease, and visible light exposure. Genetic predisposition to ARMD is also apparent, with at least 34 genetic loci and 52 gene variants associated with the disease. Without treatment, most patients with wet ARMD will suffer irreversible vision loss.
North America- the United States and Canada
Europe- EU5 (Germany, France, Italy, Spain, and the United Kingdom)
Other countries- Japan & China
This section of the study covers country-specific current clinical practice, the standard of care, and significant limitations around addressing the unmet needs. Retrospective analysis and bench-marking of clinical study outcomes are presented in terms of Pre-treatment & post-treatment clinical and demographic patient characteristics. Essentially, this section will cover the evolution of the current competitive landscape and its impact on the future treatment paradigm.
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs
- Data Inputs with sourcing
- Market Event and Product Event
- Country-specific Forecast Model
- Market uptake and patient share uptake
- Attribute Analysis
- Analog Analysis
- Disease burden and pricing scenario
- Summary and Insights
Optimization of cash flow/ revenue flow concerning all fixed and variable investments throughout the product development process. The rate of return on an investment is a critical indicator to ensure the profitability and break-even of the project.
The competitive landscape includes country-specific approved as well as pipeline therapies. Any asset/product-specific designation or review such as Orphan drug designation, Fast track, Priority Review, Breakthrough Therapy Designation, Rare Pediatric Disease Designation, and Accelerated Approval are tracked and supplemented with analyst commentary.
Detailed clinical trial data analysis and critical product positioning include trial design, primary outcomes, secondary outcomes, dosing and schedules, inclusion and exclusion criteria, recruitment status and essentially covers the reported adverse events. Majorly the trial analysis helps determine the potential of the critical assets and their probable filing and launch date.
This report presents the most important clinical unmet needs in the treatment, according to Thelansis research and analysis. Other essential unmet needs identified through our study include decreased cost burden on patients, improved administration convenience, and improved patient compliance.
S. no | Asset | Company | Stage |
1 | ONS-5010 / LYTENAVA™ | Outlook Therapeutics, Inc. | Phase 3 |
2 | SCT510A and Ranibizumab | Sinocelltech Ltd. | Phase 3 |
3 | RC28-E | RemeGen Co., Ltd. | Phase 3 |
4 | Bevacizumab (Lumiere®) | Laboratorio Elea Phoenix S.A. | Phase 3 |
5 | AKST4290 | Alkahest, Inc. | Phase 2 |
6 | Eyp-1901 | EyePoint Pharmaceuticals, Inc. | Phase 2 |
7 | CMAB818 Injection and Lucentis® | Shanghai Biomabs Pharmaceutical Co., Ltd. | Phase 1 |
8 | KSI-301 | Kodiak Sciences Inc | Phase 3 |
9 | IZERVAYTM | Iveric Bio | Phase 3 |
10 | BAT5906 injection | Bio-Thera Solutions | Phase 3 |
Continued...
KOLs across 8 MM market from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs.
COUNTRY | No. Of KOLs |
USA | 17 |
GERMANY | 4 |
UK | 4 |
SPAIN | 3 |
FRANCE | 2 |
ITALY | 3 |
JAPAN | 3 |
CHINA | 4 |
Data Inputs with sourcing, Market Event, Product Event, Country specific Forecast Model, Market uptake and patient share uptake, Attribute Analysis, Analog Analysis, Disease burden, and pricing scenario, Summary, and Insights.
1. Wet Age-Related Macular Degeneration (AMD) – Key Findings Summary |
1.1. Clinical findings |
1.1.1. Disease overview |
1.1.2. Therapeutic practices |
1.1.3. Future outlook |
1.2. Commercial findings |
1.2.1. Wet Age-Related Macular Degeneration (AMD) market scenario 2023 |
1.2.2. Wet Age-Related Macular Degeneration (AMD) market scenario 2028 |
1.2.3. Wet Age-Related Macular Degeneration (AMD) market scenario 2033 |
2. Wet Age-Related Macular Degeneration (AMD) Overview |
2.1. Disease Introduction |
2.2. Pathophysiology |
2.3. Signs and Symptoms |
2.4. Risk Factors |
2.5. Etiology |
2.6. Classification |
2.7. Pathogenesis |
2.8. Diagnosis |
2.9. Complications |
2.10. Treatment Algorithm |
2.10.1. Treatment in US (guidelines) |
2.10.2. Treatment in EU-5 (guidelines) |
2.10.3. Treatment in Japan (guidelines) |
2.10.4. Treatment in China (guidelines) |
2.11. Treatment Goals for Wet Age-Related Macular Degeneration (AMD) |
2.12. Referral Patterns |
2.12.1. Referral Scenario in US |
2.12.2. Referral Scenario in EU-5 |
2.12.3. Referral Scenario in Japan |
2.12.4. Referral Scenario in China |
2.13. Wet Age-Related Macular Degeneration (AMD) Prognosis |
2.14. Healthcare burden |
2.14.1. Healthcare burden in US |
2.14.2. Healthcare burden in EU-5 |
2.14.3. Healthcare burden in Japan |
2.14.4. Healthcare burden in China |
2.15. Unmet Needs in Wet Age-Related Macular Degeneration (AMD) management |
2.16. Market Opportunity for Wet Age-Related Macular Degeneration (AMD) |
2.17. KOL Comments on current and upcoming/expected treatment practices in Wet Age-Related Macular Degeneration (AMD) |
3. Epidemiology |
3.1. Epidemiology Overview |
3.2. Epidemiology by Geography |
3.2.1. Wet Age-Related Macular Degeneration (AMD) Epidemiology in US (2023-2033) |
3.2.1.1. Incidence of Wet Age-Related Macular Degeneration (AMD) |
3.2.1.2. Diagnosed cases |
3.2.1.3. Treatable Patient Pool |
3.2.1.4. Epidemiology Trends |
3.2.2. Wet Age-Related Macular Degeneration (AMD) Epidemiology in EU-5 (2023-2033) |
3.2.2.1. Incidence of Wet Age-Related Macular Degeneration (AMD) |
3.2.2.2. Diagnosed cases |
3.2.2.3. Treatable Patient Pool |
3.2.2.4. Epidemiology Trends |
3.2.3. Wet Age-Related Macular Degeneration (AMD) Epidemiology in Japan (2023-2033) |
3.2.3.1. Incidence of Wet Age-Related Macular Degeneration (AMD) |
3.2.3.2. Diagnosed cases |
3.2.3.3. Treatable Patient Pool |
3.2.3.4. Epidemiology Trends |
3.2.4. Wet Age-Related Macular Degeneration (AMD) Epidemiology in China (2023-2033) |
3.2.4.1. Incidence of Wet Age-Related Macular Degeneration (AMD) |
3.2.4.2. Diagnosed cases |
3.2.4.3. Treatable Patient Pool |
3.2.4.4. Epidemiology Trends |
3.3. Epidemiology Trends (World-wide) |
4. Market Outlook |
4.1. US Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.1.1. Market Progression (Futuristic) |
4.1.2. Market Trends and Expectations |
4.1.2.1. Worst case scenario |
4.1.2.2. Base Case Scenario |
4.1.2.3. Best Case Scenario |
4.1.3. Drivers and Barriers |
4.2. UK Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.2.1. Market Progression (Futuristic) |
4.2.2. Market Trends and Expectations |
4.2.2.1. Worst case scenario |
4.2.2.2. Base Case Scenario |
4.2.2.3. Best Case Scenario |
4.2.3. Drivers and Barriers |
4.3. France Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.3.1. Market Progression (Futuristic) |
4.3.2. Market Trends and Expectations |
4.3.2.1. Worst case scenario |
4.3.2.2. Base Case Scenario |
4.3.2.3. Best Case Scenario |
4.3.3. Drivers and Barriers |
4.4. Germany Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.4.1. Market Progression (Futuristic) |
4.4.2. Market Trends and Expectations |
4.4.2.1. Worst case scenario |
4.4.2.2. Base Case Scenario |
4.4.2.3. Best Case Scenario |
4.4.3. Drivers and Barriers |
4.5. Italy Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.5.1. Market Progression (Futuristic) |
4.5.2. Market Trends and Expectations |
4.5.2.1. Worst case scenario |
4.5.2.2. Base Case Scenario |
4.5.2.3. Best Case Scenario |
4.5.3. Drivers and Barriers |
4.6. Spain Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.6.1. Market Progression (Futuristic) |
4.6.2. Market Trends and Expectations |
4.6.2.1. Worst case scenario |
4.6.2.2. Base Case Scenario |
4.6.2.3. Best Case Scenario |
4.6.3. Drivers and Barriers |
4.7. Japan Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.7.1. Market Progression (Futuristic) |
4.7.2. Market Trends and Expectations |
4.7.2.1. Worst case scenario |
4.7.2.2. Base Case Scenario |
4.7.2.3. Best Case Scenario |
4.7.3. Drivers and Barriers |
4.8. China Wet Age-Related Macular Degeneration (AMD) Market Forecast 2023-2033 |
4.8.1. Market Progression (Futuristic) |
4.8.2. Market Trends and Expectations |
4.8.2.1. Worst case scenario |
4.8.2.2. Base Case Scenario |
4.8.2.3. Best Case Scenario |
4.8.3. Drivers and Barriers |
4.9. Key Expected Milestones (world-wide) Impacting the Market |
5. Competitive Landscape |
5.1. Pipeline Therapies Overview |
5.1.1. Phase III Therapies |
5.1.1.1. Current Status |
5.1.1.2. Trial details, results |
5.1.1.3. Approval Timeline |
5.1.1.4. Likelihood of approval |
5.1.1.5. Expected Product Positioning |
5.1.1.2. All other Phase III Therapies ….. |
5.1.1.3. Attribute Analysis of Phase III molecules |
5.1.2. Phase II and Phase I/II Therapies |
5.1.2.1. Current Status |
5.1.2.2. Trial details, results |
5.1.2.3. Approval Timelines |
5.1.3. List of active Pre-clinical Therapies |
5.1.3.1. Status in Wet Age-Related Macular Degeneration (AMD) |
5.1.3.2. Company positioning |
5.1.3.2. All other pre-clinical therapies |
5.1.4. List of Inactive/discontinued assets |
5.1.4.1. Business impact of discontinuations on current pipeline |
5.1.5. Potential winners from Wet Age-Related Macular Degeneration (AMD) Pipeline |
5.1.5.1. Potential Blockbusters across the pipeline |
6. Regulatory/Approval Scenario |
6.1. Regulatory/Approval Framework in US |
6.1.1. Policy Framework |
6.1.2. Payer Expectations |
6.2. Regulatory/Approval Framework in UK |
6.2.1. Policy Framework |
6.2.2. Payer Expectations |
6.3. Regulatory/Approval Framework in France |
6.3.1. Policy Framework |
6.3.2. Payer Expectations |
6.4. Regulatory/Approval Framework in Germany |
6.4.1. Policy Framework |
6.4.2. Payer Expectations |
6.5. Regulatory/Approval Framework in Italy |
6.5.1. Policy Framework |
6.5.2. Payer Expectations |
6.6. Regulatory/Approval Framework in Spain |
6.6.1. Policy Framework |
6.6.2. Payer Expectations |
6.7. Regulatory/Approval Framework in Japan |
6.7.1. Policy Framework |
6.7.2. Payer Expectations |
6.8. Regulatory/Approval Framework in China |
6.8.1. Policy Framework |
6.8.2. Payer Expectations |
7. Clinical Trial Assessment – Current and Future Paradigm |
7.1. Distribution of Primary Endpoints across trials |
7.2. Distribution of Secondary Endpoints across trials |
7.3. Evolution and acceptance of surrogate endpoints |
7.4. Key Investigator initiated trials |
7.5. Attrition analysis |
7.5.1. Suspended/Discontinued Assets |
7.5.2. Failed Trials, Reasons and Business Impact |
7.5.3. Terminated Trials, Reasons and Business Impact |
7.5.4. Withdrawn Trials, Reasons and Business Impact |
7.6. Trial enrollment scenario and challenges |
7.7. Clinical Trial Guidance (across geographies) |
8. Thelansis Commentary |
8.1. Key Unmet needs in Wet Age-Related Macular Degeneration (AMD) |
8.2. Possible Best-case Clinical Trial Strategies |
8.3. Possible Best Case Targeted Product Profile (TPP) |
8.4. Possible Best-case Market positioning strategies |
8.5. Possible Best-case Market Access Strategies |
8.6. Possible Best-case LCM Strategies |
8.7. Overall View on Wet Age-Related Macular Degeneration (AMD) Market in Dollar Value |
9. Report Methodology |
9.1. Secondary research |
9.2. Primary research |
9.3. Data collation |
9.4. Insight Generation |
10. About Thelansis |
10.1. Our Capabilities |
10.2. Our Services |
10.3. Our Contacts |
10.4. Disclaimer |