Published Date : 2021-12-24
Published Date : 2021-12-24
Updated On : 2022-09-13
Pages : 156
Thelansis’s “Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Outlook, Epidemiology, Competitive Landscape, and Market Forecast Report – 2021 To 2032" covers disease overview, epidemiology, drug utilization, prescription share analysis, Competitive landscape, clinical practice, regulatory landscape, patient share, market uptake, and market forecast under the potential Non–Shiga toxin-associated HUS (non–Stx-HUS) treatment modalities options for eight major markets (USA, Germany, France, Italy, Spain, UK, Japan, and China).
Non–Shiga toxin-associated HUS (non–Stx-HUS) comprises a heterogeneous group of patients in whom an infection by Stx-producing bacteria could be excluded as the cause of the disease. It can be sporadic or familial, with more than one family member affected by the disease and exposure to Stx-E. Coli excluded. Collectively, non–Stx-HUS forms have a poor outcome. Up to 50% of cases progress to ESRD or have irreversible brain damage, and 25% may die during the acute phase of the disease. After exposure to Stx-E. Coli, 38 to 61% of individuals, develop hemorrhagic colitis and 3 to 9% (in sporadic infections) to 20% progress to overt HUS. The average interval between E. coli exposure and illness is three days. Disease typically begins with abdominal cramps and nonbloody diarrhea; diarrhea may become hemorrhagic in 70% of cases, usually within 1 or 2 d. Vomiting occurs in 30 to 60% of cases, and fever occurs in 30%. Leukocyte count is generally elevated, and a barium enema may demonstrate “thumb-printing,” suggestive of edema and submucosal hemorrhage, especially in the ascending and transverse colon region. HUS is usually diagnosed 6 d after the onset of diarrhea.
North America- the United States and Canada
Europe- EU5 (Germany, France, Italy, Spain, and the United Kingdom)
Other countries- Japan & China
This section of the study covers country-specific current clinical practice, the standard of care, and significant limitations around addressing the unmet needs. Retrospective analysis and bench-marking of clinical study outcomes are presented in terms of Pre-treatment & post-treatment clinical and demographic patient characteristics. Essentially, this section will cover the evolution of the current competitive landscape and its impact on the future treatment paradigm.
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs
- Data Inputs with sourcing
- Market Event and Product Event
- Country-specific Forecast Model
- Market uptake and patient share uptake
- Attribute Analysis
- Analog Analysis
- Disease burden and pricing scenario
- Summary and Insights
Optimization of cash flow/ revenue flow concerning all fixed and variable investments throughout the product development process. The rate of return on an investment is a critical indicator to ensure the profitability and break-even of the project.
The competitive landscape includes country-specific approved as well as pipeline therapies. Any asset/product-specific designation or review such as Orphan drug designation, Fast track, Priority Review, Breakthrough Therapy Designation, Rare Pediatric Disease Designation, and Accelerated Approval are tracked and supplemented with analyst commentary.
Detailed clinical trial data analysis and critical product positioning include trial design, primary outcomes, secondary outcomes, dosing and schedules, inclusion and exclusion criteria, recruitment status and essentially covers the reported adverse events. Majorly the trial analysis helps determine the potential of the critical assets and their probable filing and launch date.
This report presents the most important clinical unmet needs in the treatment, according to Thelansis research and analysis. Other essential unmet needs identified through our study include decreased cost burden on patients, improved administration convenience, and improved patient compliance.
Will be update soon...
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs.
COUNTRY | No. Of KOLs |
USA | 17 |
GERMANY | 4 |
UK | 5 |
SPAIN | 4 |
FRANCE | 4 |
ITALY | 4 |
JAPAN | 5 |
CHINA | 5 |
Data Inputs with sourcing, Market Event, Product Event, Country specific Forecast Model, Market uptake and patient share uptake, Attribute Analysis, Analog Analysis, Disease burden, and pricing scenario, Summary, and Insights.
1. Non–Shiga toxin-associated HUS (non–Stx-HUS) – Key Findings Summary |
1.1. Clinical findings |
1.1.1. Disease overview |
1.1.2. Therapeutic practices |
1.1.3. Future outlook |
1.2. Commercial findings |
1.2.1. Non–Shiga toxin-associated HUS (non–Stx-HUS) market scenario 2021 |
1.2.2. Non–Shiga toxin-associated HUS (non–Stx-HUS) market scenario 2025 |
1.2.3. Non–Shiga toxin-associated HUS (non–Stx-HUS) market scenario 2032 |
2. Non–Shiga toxin-associated HUS (non–Stx-HUS) Overview |
2.1. Disease Introduction |
2.2. Pathophysiology |
2.3. Signs and Symptoms |
2.4. Risk Factors |
2.5. Etiology |
2.6. Classification |
2.7. Pathogenesis |
2.8. Diagnosis |
2.9. Complications |
2.10. Treatment Algorithm |
2.10.1. Treatment in US (guidelines) |
2.10.2. Treatment in EU-5 (guidelines) |
2.10.3. Treatment in Japan (guidelines) |
2.10.4. Treatment in China (guidelines) |
2.11. Treatment Goals for Non–Shiga toxin-associated HUS (non–Stx-HUS) |
2.12. Referral Patterns |
2.12.1. Referral Scenario in US |
2.12.2. Referral Scenario in EU-5 |
2.12.3. Referral Scenario in Japan |
2.12.4. Referral Scenario in China |
2.13. Non–Shiga toxin-associated HUS (non–Stx-HUS) Prognosis |
2.14. Healthcare burden |
2.14.1. Healthcare burden in US |
2.14.2. Healthcare burden in EU-5 |
2.14.3. Healthcare burden in Japan |
2.14.4. Healthcare burden in China |
2.15. Unmet Needs in Non–Shiga toxin-associated HUS (non–Stx-HUS) management |
2.16. Market Opportunity for Non–Shiga toxin-associated HUS (non–Stx-HUS) |
2.17. KOL Comments on current and upcoming/expected treatment practices in Non–Shiga toxin-associated HUS (non–Stx-HUS) |
3. Epidemiology |
3.1. Epidemiology Overview |
3.2. Epidemiology by Geography |
3.2.1. Non–Shiga toxin-associated HUS (non–Stx-HUS) Epidemiology in US (2021-2032) |
3.2.1.1. Incidence of Non–Shiga toxin-associated HUS (non–Stx-HUS) |
3.2.1.2. Diagnosed cases |
3.2.1.3. Treatable Patient Pool |
3.2.1.4. Epidemiology Trends |
3.2.2. Non–Shiga toxin-associated HUS (non–Stx-HUS) Epidemiology in EU-5 (2021-2032) |
3.2.2.1. Incidence of Non–Shiga toxin-associated HUS (non–Stx-HUS) |
3.2.2.2. Diagnosed cases |
3.2.2.3. Treatable Patient Pool |
3.2.2.4. Epidemiology Trends |
3.2.3. Non–Shiga toxin-associated HUS (non–Stx-HUS) Epidemiology in Japan (2021-2032) |
3.2.3.1. Incidence of Non–Shiga toxin-associated HUS (non–Stx-HUS) |
3.2.3.2. Diagnosed cases |
3.2.3.3. Treatable Patient Pool |
3.2.3.4. Epidemiology Trends |
3.2.4. Non–Shiga toxin-associated HUS (non–Stx-HUS) Epidemiology in China (2021-2032) |
3.2.4.1. Incidence of Non–Shiga toxin-associated HUS (non–Stx-HUS) |
3.2.4.2. Diagnosed cases |
3.2.4.3. Treatable Patient Pool |
3.2.4.4. Epidemiology Trends |
3.3. Epidemiology Trends (World-wide) |
4. Market Outlook |
4.1. US Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.1.1. Market Progression (Futuristic) |
4.1.2. Market Trends and Expectations |
4.1.2.1. Worst case scenario |
4.1.2.2. Base Case Scenario |
4.1.2.3. Best Case Scenario |
4.1.3. Drivers and Barriers |
4.2. UK Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.2.1. Market Progression (Futuristic) |
4.2.2. Market Trends and Expectations |
4.2.2.1. Worst case scenario |
4.2.2.2. Base Case Scenario |
4.2.2.3. Best Case Scenario |
4.2.3. Drivers and Barriers |
4.3. France Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.3.1. Market Progression (Futuristic) |
4.3.2. Market Trends and Expectations |
4.3.2.1. Worst case scenario |
4.3.2.2. Base Case Scenario |
4.3.2.3. Best Case Scenario |
4.3.3. Drivers and Barriers |
4.4. Germany Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.4.1. Market Progression (Futuristic) |
4.4.2. Market Trends and Expectations |
4.4.2.1. Worst case scenario |
4.4.2.2. Base Case Scenario |
4.4.2.3. Best Case Scenario |
4.4.3. Drivers and Barriers |
4.5. Italy Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.5.1. Market Progression (Futuristic) |
4.5.2. Market Trends and Expectations |
4.5.2.1. Worst case scenario |
4.5.2.2. Base Case Scenario |
4.5.2.3. Best Case Scenario |
4.5.3. Drivers and Barriers |
4.6. Spain Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.6.1. Market Progression (Futuristic) |
4.6.2. Market Trends and Expectations |
4.6.2.1. Worst case scenario |
4.6.2.2. Base Case Scenario |
4.6.2.3. Best Case Scenario |
4.6.3. Drivers and Barriers |
4.7. Japan Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.7.1. Market Progression (Futuristic) |
4.7.2. Market Trends and Expectations |
4.7.2.1. Worst case scenario |
4.7.2.2. Base Case Scenario |
4.7.2.3. Best Case Scenario |
4.7.3. Drivers and Barriers |
4.8. China Non–Shiga toxin-associated HUS (non–Stx-HUS) Market Forecast 2021-2032 |
4.8.1. Market Progression (Futuristic) |
4.8.2. Market Trends and Expectations |
4.8.2.1. Worst case scenario |
4.8.2.2. Base Case Scenario |
4.8.2.3. Best Case Scenario |
4.8.3. Drivers and Barriers |
4.9. Key Expected Milestones (world-wide) Impacting the Market |
5. Competitive Landscape |
5.1. Pipeline Therapies Overview |
5.1.1. Phase III Therapies |
5.1.1.1. Current Status |
5.1.1.2. Trial details, results |
5.1.1.3. Approval Timeline |
5.1.1.4. Likelihood of approval |
5.1.1.5. Expected Product Positioning |
5.1.1.2. All other Phase III Therapies ….. |
5.1.1.3. Attribute Analysis of Phase III molecules |
5.1.2. Phase II and Phase I/II Therapies |
5.1.2.1. Current Status |
5.1.2.2. Trial details, results |
5.1.2.3. Approval Timelines |
5.1.3. List of active Pre-clinical Therapies |
5.1.3.1. Status in Non–Shiga toxin-associated HUS (non–Stx-HUS) |
5.1.3.2. Company positioning |
5.1.3.2. All other pre-clinical therapies |
5.1.4. List of Inactive/discontinued assets |
5.1.4.1. Business impact of discontinuations on current pipeline |
5.1.5. Potential winners from Non–Shiga toxin-associated HUS (non–Stx-HUS) Pipeline |
5.1.5.1. Potential Blockbusters across the pipeline |
6. Regulatory/Approval Scenario |
6.1. Regulatory/Approval Framework in US |
6.1.1. Policy Framework |
6.1.2. Payer Expectations |
6.2. Regulatory/Approval Framework in UK |
6.2.1. Policy Framework |
6.2.2. Payer Expectations |
6.3. Regulatory/Approval Framework in France |
6.3.1. Policy Framework |
6.3.2. Payer Expectations |
6.4. Regulatory/Approval Framework in Germany |
6.4.1. Policy Framework |
6.4.2. Payer Expectations |
6.5. Regulatory/Approval Framework in Italy |
6.5.1. Policy Framework |
6.5.2. Payer Expectations |
6.6. Regulatory/Approval Framework in Spain |
6.6.1. Policy Framework |
6.6.2. Payer Expectations |
6.7. Regulatory/Approval Framework in Japan |
6.7.1. Policy Framework |
6.7.2. Payer Expectations |
6.8. Regulatory/Approval Framework in China |
6.8.1. Policy Framework |
6.8.2. Payer Expectations |
7. Clinical Trial Assessment – Current and Future Paradigm |
7.1. Distribution of Primary Endpoints across trials |
7.2. Distribution of Secondary Endpoints across trials |
7.3. Evolution and acceptance of surrogate endpoints |
7.4. Key Investigator initiated trials |
7.5. Attrition analysis |
7.5.1. Suspended/Discontinued Assets |
7.5.2. Failed Trials, Reasons and Business Impact |
7.5.3. Terminated Trials, Reasons and Business Impact |
7.5.4. Withdrawn Trials, Reasons and Business Impact |
7.6. Trial enrollment scenario and challenges |
7.7. Clinical Trial Guidance (across geographies) |
8. Thelansis Commentary |
8.1. Key Unmet needs in Non–Shiga toxin-associated HUS (non–Stx-HUS) |
8.2. Possible Best-case Clinical Trial Strategies |
8.3. Possible Best Case Targeted Product Profile (TPP) |
8.4. Possible Best-case Market positioning strategies |
8.5. Possible Best-case Market Access Strategies |
8.6. Possible Best-case LCM Strategies |
8.7. Overall View on Non–Shiga toxin-associated HUS (non–Stx-HUS) Market in Dollar Value |
9. Report Methodology |
9.1. Secondary research |
9.2. Primary research |
9.3. Data collation |
9.4. Insight Generation |
10. About Thelansis |
10.1. Our Capabilities |
10.2. Our Services |
10.3. Our Contacts |
10.4. Disclaimer |