Published Date : 2022-08-23
Published Date : 2022-08-23
Updated On : 2023-04-14
Pages : 156
Thelansis’s “Hypertrophic Cardiomyopathy (HCM) Market Outlook, Epidemiology, Competitive Landscape, and Market Forecast Report – 2022 To 2032" covers disease overview, epidemiology, drug utilization, prescription share analysis, competitive landscape, clinical practice, regulatory landscape, patient share, market uptake, market forecast, and key market insights under the potential Hypertrophic Cardiomyopathy treatment modalities options for eight major markets (USA, Germany, France, Italy, Spain, UK, Japan, and China).
Hypertrophic cardiomyopathy (HCM) is a genetic disorder affecting cardiac myocytes, characterized by cardiac hypertrophy, which loading conditions cannot explain, a nondilated left ventricle, and a normal or increased or increased ejection fraction. Cardiac hypertrophy is typically asymmetric and commonly involves the basal interventricular septum subjacent to the aortic valve, although other myocardial regions may also be affected. At the cellular level, cardiac myocytes are hypertrophied, disorganized, and separated by areas of interstitial fibrosis. Most patients with HCM are asymptomatic or have minimal symptoms. However, the condition can cause a range of pathophysiological features, including diastolic ventricular dysfunction, obstruction to the left ventricular outflow tract, an imbalance between myocardial oxygen supply and demand, and cardiac arrhythmias. Patients with HCM may exhibit a variable phenotype, with ventricular hypertrophy being the cardinal manifestation and myocyte hypertrophy, disarray, interstitial fibrosis, impaired ventricular filling, and dynamic left ventricular outflow tract obstruction. Clinical diagnosis of HCM is based on left ventricular hypertrophy, typically defined by an end-diastolic ventricular septal thickness in adults of 13 mm or greater, occurring without abnormal loading conditions or other secondary causes. HCM is a common cause of sudden cardiac death in adolescents and young adults, particularly in competitive athletes.
North America- the United States and Canada
Europe- EU5 (Germany, France, Italy, Spain, and the United Kingdom)
Other countries- Japan & China
This section of the study covers country-specific current clinical practice, the standard of care, and significant limitations around addressing the unmet needs. Retrospective analysis and bench-marking of clinical study outcomes are presented in terms of Pre-treatment & post-treatment clinical and demographic patient characteristics. Essentially, this section will cover the evolution of the current competitive landscape and its impact on the future treatment paradigm.
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs
- Data Inputs with sourcing
- Market Event and Product Event
- Country-specific Forecast Model
- Market uptake and patient share uptake
- Attribute Analysis
- Analog Analysis
- Disease burden and pricing scenario
- Summary and Insights
Optimization of cash flow/ revenue flow concerning all fixed and variable investments throughout the product development process. The rate of return on an investment is a critical indicator to ensure the profitability and break-even of the project.
The competitive landscape includes country-specific approved as well as pipeline therapies. Any asset/product-specific designation or review such as Orphan drug designation, Fast track, Priority Review, Breakthrough Therapy Designation, Rare Pediatric Disease Designation, and Accelerated Approval are tracked and supplemented with analyst commentary.
Detailed clinical trial data analysis and critical product positioning include trial design, primary outcomes, secondary outcomes, dosing and schedules, inclusion and exclusion criteria, recruitment status and essentially covers the reported adverse events. Majorly the trial analysis helps determine the potential of the critical assets and their probable filing and launch date.
This report presents the most important clinical unmet needs in the treatment, according to Thelansis research and analysis. Other essential unmet needs identified through our study include decreased cost burden on patients, improved administration convenience, and improved patient compliance.
S. no | Asset | Company | Stage |
1 | TN-201 | Tenaya Therapeutics | Phase 1 |
2 | CK-3773274 | Cytokinetics | Phase 2 |
3 | Mavacamten | MyoKardia, Inc. | Phase 3 |
4 | Mavacamten | LianBio LLC | Phase 3 |
5 | IMB-1018972 | Imbria Pharmaceuticals, Inc. | Phase 2 |
KOLs across 8 MM market from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs.
COUNTRY | No. Of KOLs |
USA | 17 |
GERMANY | 4 |
UK | 4 |
SPAIN | 3 |
FRANCE | 2 |
ITALY | 3 |
JAPAN | 3 |
CHINA | 4 |
Data Inputs with sourcing, Market Event, Product Event, Country specific Forecast Model, Market uptake and patient share uptake, Attribute Analysis, Analog Analysis, Disease burden, and pricing scenario, Summary, and Insights.
1. Hypertrophic Cardiomyopathy (HCM) – Key Findings Summary |
1.1. Clinical findings |
1.1.1. Disease overview |
1.1.2. Therapeutic practices |
1.1.3. Future outlook |
1.2. Commercial findings |
1.2.1. Hypertrophic Cardiomyopathy (HCM) market scenario 2022 |
1.2.2. Hypertrophic Cardiomyopathy (HCM) market scenario 2025 |
1.2.3. Hypertrophic Cardiomyopathy (HCM) market scenario 2032 |
2. Hypertrophic Cardiomyopathy (HCM) Overview |
2.1. Disease Introduction |
2.2. Pathophysiology |
2.3. Signs and Symptoms |
2.4. Risk Factors |
2.5. Etiology |
2.6. Classification |
2.7. Pathogenesis |
2.8. Diagnosis |
2.9. Complications |
2.10. Treatment Algorithm |
2.10.1. Treatment in US (guidelines) |
2.10.2. Treatment in EU-5 (guidelines) |
2.10.3. Treatment in Japan (guidelines) |
2.10.4. Treatment in China (guidelines) |
2.11. Treatment Goals for Hypertrophic Cardiomyopathy (HCM) |
2.12. Referral Patterns |
2.12.1. Referral Scenario in US |
2.12.2. Referral Scenario in EU-5 |
2.12.3. Referral Scenario in Japan |
2.12.4. Referral Scenario in China |
2.13. Hypertrophic Cardiomyopathy (HCM) Prognosis |
2.14. Healthcare burden |
2.14.1. Healthcare burden in US |
2.14.2. Healthcare burden in EU-5 |
2.14.3. Healthcare burden in Japan |
2.14.4. Healthcare burden in China |
2.15. Unmet Needs in Hypertrophic Cardiomyopathy (HCM) management |
2.16. Market Opportunity for Hypertrophic Cardiomyopathy (HCM) |
2.17. KOL Comments on current and upcoming/expected treatment practices in Hypertrophic Cardiomyopathy (HCM) |
3. Epidemiology |
3.1. Epidemiology Overview |
3.2. Epidemiology by Geography |
3.2.1. Hypertrophic Cardiomyopathy (HCM) Epidemiology in US (2022-2032) |
3.2.1.1. Incidence of Hypertrophic Cardiomyopathy (HCM) |
3.2.1.2. Diagnosed cases |
3.2.1.3. Treatable Patient Pool |
3.2.1.4. Epidemiology Trends |
3.2.2. Hypertrophic Cardiomyopathy (HCM) Epidemiology in EU-5 (2022-2032) |
3.2.2.1. Incidence of Hypertrophic Cardiomyopathy (HCM) |
3.2.2.2. Diagnosed cases |
3.2.2.3. Treatable Patient Pool |
3.2.2.4. Epidemiology Trends |
3.2.3. Hypertrophic Cardiomyopathy (HCM) Epidemiology in Japan (2022-2032) |
3.2.3.1. Incidence of Hypertrophic Cardiomyopathy (HCM) |
3.2.3.2. Diagnosed cases |
3.2.3.3. Treatable Patient Pool |
3.2.3.4. Epidemiology Trends |
3.2.4. Hypertrophic Cardiomyopathy (HCM) Epidemiology in China (2022-2032) |
3.2.4.1. Incidence of Hypertrophic Cardiomyopathy (HCM) |
3.2.4.2. Diagnosed cases |
3.2.4.3. Treatable Patient Pool |
3.2.4.4. Epidemiology Trends |
3.3. Epidemiology Trends (World-wide) |
4. Market Outlook |
4.1. US Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.1.1. Market Progression (Futuristic) |
4.1.2. Market Trends and Expectations |
4.1.2.1. Worst case scenario |
4.1.2.2. Base Case Scenario |
4.1.2.3. Best Case Scenario |
4.1.3. Drivers and Barriers |
4.2. UK Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.2.1. Market Progression (Futuristic) |
4.2.2. Market Trends and Expectations |
4.2.2.1. Worst case scenario |
4.2.2.2. Base Case Scenario |
4.2.2.3. Best Case Scenario |
4.2.3. Drivers and Barriers |
4.3. France Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.3.1. Market Progression (Futuristic) |
4.3.2. Market Trends and Expectations |
4.3.2.1. Worst case scenario |
4.3.2.2. Base Case Scenario |
4.3.2.3. Best Case Scenario |
4.3.3. Drivers and Barriers |
4.4. Germany Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.4.1. Market Progression (Futuristic) |
4.4.2. Market Trends and Expectations |
4.4.2.1. Worst case scenario |
4.4.2.2. Base Case Scenario |
4.4.2.3. Best Case Scenario |
4.4.3. Drivers and Barriers |
4.5. Italy Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.5.1. Market Progression (Futuristic) |
4.5.2. Market Trends and Expectations |
4.5.2.1. Worst case scenario |
4.5.2.2. Base Case Scenario |
4.5.2.3. Best Case Scenario |
4.5.3. Drivers and Barriers |
4.6. Spain Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.6.1. Market Progression (Futuristic) |
4.6.2. Market Trends and Expectations |
4.6.2.1. Worst case scenario |
4.6.2.2. Base Case Scenario |
4.6.2.3. Best Case Scenario |
4.6.3. Drivers and Barriers |
4.7. Japan Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.7.1. Market Progression (Futuristic) |
4.7.2. Market Trends and Expectations |
4.7.2.1. Worst case scenario |
4.7.2.2. Base Case Scenario |
4.7.2.3. Best Case Scenario |
4.7.3. Drivers and Barriers |
4.8. China Hypertrophic Cardiomyopathy (HCM) Market Forecast 2022-2032 |
4.8.1. Market Progression (Futuristic) |
4.8.2. Market Trends and Expectations |
4.8.2.1. Worst case scenario |
4.8.2.2. Base Case Scenario |
4.8.2.3. Best Case Scenario |
4.8.3. Drivers and Barriers |
4.9. Key Expected Milestones (world-wide) Impacting the Market |
5. Competitive Landscape |
5.1. Pipeline Therapies Overview |
5.1.1. Phase III Therapies |
5.1.1.1. Current Status |
5.1.1.2. Trial details, results |
5.1.1.3. Approval Timeline |
5.1.1.4. Likelihood of approval |
5.1.1.5. Expected Product Positioning |
5.1.1.2. All other Phase III Therapies ….. |
5.1.1.3. Attribute Analysis of Phase III molecules |
5.1.2. Phase II and Phase I/II Therapies |
5.1.2.1. Current Status |
5.1.2.2. Trial details, results |
5.1.2.3. Approval Timelines |
5.1.3. List of active Pre-clinical Therapies |
5.1.3.1. Status in Hypertrophic Cardiomyopathy (HCM) |
5.1.3.2. Company positioning |
5.1.3.2. All other pre-clinical therapies |
5.1.4. List of Inactive/discontinued assets |
5.1.4.1. Business impact of discontinuations on current pipeline |
5.1.5. Potential winners from Hypertrophic Cardiomyopathy (HCM) Pipeline |
5.1.5.1. Potential Blockbusters across the pipeline |
6. Regulatory/Approval Scenario |
6.1. Regulatory/Approval Framework in US |
6.1.1. Policy Framework |
6.1.2. Payer Expectations |
6.2. Regulatory/Approval Framework in UK |
6.2.1. Policy Framework |
6.2.2. Payer Expectations |
6.3. Regulatory/Approval Framework in France |
6.3.1. Policy Framework |
6.3.2. Payer Expectations |
6.4. Regulatory/Approval Framework in Germany |
6.4.1. Policy Framework |
6.4.2. Payer Expectations |
6.5. Regulatory/Approval Framework in Italy |
6.5.1. Policy Framework |
6.5.2. Payer Expectations |
6.6. Regulatory/Approval Framework in Spain |
6.6.1. Policy Framework |
6.6.2. Payer Expectations |
6.7. Regulatory/Approval Framework in Japan |
6.7.1. Policy Framework |
6.7.2. Payer Expectations |
6.8. Regulatory/Approval Framework in China |
6.8.1. Policy Framework |
6.8.2. Payer Expectations |
7. Clinical Trial Assessment – Current and Future Paradigm |
7.1. Distribution of Primary Endpoints across trials |
7.2. Distribution of Secondary Endpoints across trials |
7.3. Evolution and acceptance of surrogate endpoints |
7.4. Key Investigator initiated trials |
7.5. Attrition analysis |
7.5.1. Suspended/Discontinued Assets |
7.5.2. Failed Trials, Reasons and Business Impact |
7.5.3. Terminated Trials, Reasons and Business Impact |
7.5.4. Withdrawn Trials, Reasons and Business Impact |
7.6. Trial enrollment scenario and challenges |
7.7. Clinical Trial Guidance (across geographies) |
8. Thelansis Commentary |
8.1. Key Unmet needs in Hypertrophic Cardiomyopathy (HCM) |
8.2. Possible Best-case Clinical Trial Strategies |
8.3. Possible Best Case Targeted Product Profile (TPP) |
8.4. Possible Best-case Market positioning strategies |
8.5. Possible Best-case Market Access Strategies |
8.6. Possible Best-case LCM Strategies |
8.7. Overall View on Hypertrophic Cardiomyopathy (HCM) Market in Dollar Value |
9. Report Methodology |
9.1. Secondary research |
9.2. Primary research |
9.3. Data collation |
9.4. Insight Generation |
10. About Thelansis |
10.1. Our Capabilities |
10.2. Our Services |
10.3. Our Contacts |
10.4. Disclaimer |