Published Date : 2022-08-04
Published Date : 2022-08-04
Updated On : 2023-07-08
Pages : 151
Thelansis’s “Eastern Equine Encephalitis (EEE) Market Outlook, Epidemiology, Competitive Landscape, and Market Forecast Report – 2022 To 2032" covers disease overview, epidemiology, drug utilization, prescription share analysis, competitive landscape, clinical practice, regulatory landscape, patient share, market uptake, market forecast, and key market insights under the potential Eastern Equine Encephalitis treatment modalities options for eight major markets (USA, Germany, France, Italy, Spain, UK, Japan, and China).
Eastern equine encephalitis (EEE) is a rare yet grave infection resulting in encephalitis or brain inflammation. It is caused by the EEE virus (EEEV), transmitted through the bite of a mosquito carrying the virus. Considered one of the most severe forms of arboviral encephalitis in America, EEE affects individuals differently based on their age. Those over 50 and under 15 face the highest risk of severe illness. The onset of severe EEE cases is sudden, marked by intense headache, high fever, chills, and vomiting. These symptoms can progress to disorientation, seizures, encephalitis, and coma. Alarming statistics show that approximately one-third of EEE patients do not survive the infection. Those who do survive often experience varying degrees of brain damage. The EEE virus, classified within the Togaviridae family and alphavirus genus, is maintained through a cycle involving birds and primarily Culiseta melanura mosquitoes found in freshwater hardwood swamps. To date, no antiviral medication has demonstrated effectiveness against Eastern equine encephalitis. Supportive care remains the primary approach, with severe cases often necessitating admission to intensive care units and ventilatory assistance. Healthcare professionals in areas with elevated risk of EEE transmission should consider this infection when presented with aseptic meningitis or encephalitis cases. Any suspected instances should be promptly reported to local health authorities. The differential diagnosis encompasses other viral encephalitides like measles, mumps, echovirus, and the less probable Creutzfeldt–Jakob disease. The fatality rate for EEE is estimated to be as high as 41% and around 50% of affected patients will experience some form of neurological impairment. Factors that predict poor outcomes include severe hyponatremia, abnormal electroencephalograms, and high initial cerebrospinal fluid pleocytosis. Although these findings might indicate inflammatory markers, it's intriguing that patients treated with corticosteroids tend to fare worse than those who aren't treated with them.
North America- the United States and Canada
Europe- EU5 (Germany, France, Italy, Spain, and the United Kingdom)
Other countries- Japan & China
This section of the study covers country-specific current clinical practice, the standard of care, and significant limitations around addressing the unmet needs. Retrospective analysis and bench-marking of clinical study outcomes are presented in terms of Pre-treatment & post-treatment clinical and demographic patient characteristics. Essentially, this section will cover the evolution of the current competitive landscape and its impact on the future treatment paradigm.
KOLs across 8 MM markets from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs
- Data Inputs with sourcing
- Market Event and Product Event
- Country-specific Forecast Model
- Market uptake and patient share uptake
- Attribute Analysis
- Analog Analysis
- Disease burden and pricing scenario
- Summary and Insights
Optimization of cash flow/ revenue flow concerning all fixed and variable investments throughout the product development process. The rate of return on an investment is a critical indicator to ensure the profitability and break-even of the project.
The competitive landscape includes country-specific approved as well as pipeline therapies. Any asset/product-specific designation or review such as Orphan drug designation, Fast track, Priority Review, Breakthrough Therapy Designation, Rare Pediatric Disease Designation, and Accelerated Approval are tracked and supplemented with analyst commentary.
Detailed clinical trial data analysis and critical product positioning include trial design, primary outcomes, secondary outcomes, dosing and schedules, inclusion and exclusion criteria, recruitment status and essentially covers the reported adverse events. Majorly the trial analysis helps determine the potential of the critical assets and their probable filing and launch date.
This report presents the most important clinical unmet needs in the treatment, according to Thelansis research and analysis. Other essential unmet needs identified through our study include decreased cost burden on patients, improved administration convenience, and improved patient compliance.
Will be update soon...
KOLs across 8 MM market from the center of Excellence/ Public/ Private hospitals participated in the study. Insights around current treatment landscape, epidemiology, clinical characteristics, future treatment paradigm, and Unmet needs.
COUNTRY | No. Of KOLs |
USA | 17 |
GERMANY | 4 |
UK | 4 |
SPAIN | 3 |
FRANCE | 2 |
ITALY | 3 |
JAPAN | 3 |
CHINA | 4 |
Data Inputs with sourcing, Market Event, Product Event, Country specific Forecast Model, Market uptake and patient share uptake, Attribute Analysis, Analog Analysis, Disease burden, and pricing scenario, Summary, and Insights.
1. Eastern Equine Encephalitis (EEE) – Key Findings Summary |
1.1. Clinical findings |
1.1.1. Disease overview |
1.1.2. Therapeutic practices |
1.1.3. Future outlook |
1.2. Commercial findings |
1.2.1. Eastern Equine Encephalitis (EEE) market scenario 2022 |
1.2.2. Eastern Equine Encephalitis (EEE) market scenario 2025 |
1.2.3. Eastern Equine Encephalitis (EEE) market scenario 2032 |
2. Eastern Equine Encephalitis (EEE) Overview |
2.1. Disease Introduction |
2.2. Pathophysiology |
2.3. Signs and Symptoms |
2.4. Risk Factors |
2.5. Etiology |
2.6. Classification |
2.7. Pathogenesis |
2.8. Diagnosis |
2.9. Complications |
2.10. Treatment Algorithm |
2.10.1. Treatment in US (guidelines) |
2.10.2. Treatment in EU-5 (guidelines) |
2.10.3. Treatment in Japan (guidelines) |
2.10.4. Treatment in China (guidelines) |
2.11. Treatment Goals for Eastern Equine Encephalitis (EEE) |
2.12. Referral Patterns |
2.12.1. Referral Scenario in US |
2.12.2. Referral Scenario in EU-5 |
2.12.3. Referral Scenario in Japan |
2.12.4. Referral Scenario in China |
2.13. Eastern Equine Encephalitis (EEE) Prognosis |
2.14. Healthcare burden |
2.14.1. Healthcare burden in US |
2.14.2. Healthcare burden in EU-5 |
2.14.3. Healthcare burden in Japan |
2.14.4. Healthcare burden in China |
2.15. Unmet Needs in Eastern Equine Encephalitis (EEE) management |
2.16. Market Opportunity for Eastern Equine Encephalitis (EEE) |
2.17. KOL Comments on current and upcoming/expected treatment practices in Eastern Equine Encephalitis (EEE) |
3. Epidemiology |
3.1. Epidemiology Overview |
3.2. Epidemiology by Geography |
3.2.1. Eastern Equine Encephalitis (EEE) Epidemiology in US (2022-2032) |
3.2.1.1. Incidence of Eastern Equine Encephalitis (EEE) |
3.2.1.2. Diagnosed cases |
3.2.1.3. Treatable Patient Pool |
3.2.1.4. Epidemiology Trends |
3.2.2. Eastern Equine Encephalitis (EEE) Epidemiology in EU-5 (2022-2032) |
3.2.2.1. Incidence of Eastern Equine Encephalitis (EEE) |
3.2.2.2. Diagnosed cases |
3.2.2.3. Treatable Patient Pool |
3.2.2.4. Epidemiology Trends |
3.2.3. Eastern Equine Encephalitis (EEE) Epidemiology in Japan (2022-2032) |
3.2.3.1. Incidence of Eastern Equine Encephalitis (EEE) |
3.2.3.2. Diagnosed cases |
3.2.3.3. Treatable Patient Pool |
3.2.3.4. Epidemiology Trends |
3.2.4. Eastern Equine Encephalitis (EEE) Epidemiology in China (2022-2032) |
3.2.4.1. Incidence of Eastern Equine Encephalitis (EEE) |
3.2.4.2. Diagnosed cases |
3.2.4.3. Treatable Patient Pool |
3.2.4.4. Epidemiology Trends |
3.3. Epidemiology Trends (World-wide) |
4. Market Outlook |
4.1. US Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.1.1. Market Progression (Futuristic) |
4.1.2. Market Trends and Expectations |
4.1.2.1. Worst case scenario |
4.1.2.2. Base Case Scenario |
4.1.2.3. Best Case Scenario |
4.1.3. Drivers and Barriers |
4.2. UK Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.2.1. Market Progression (Futuristic) |
4.2.2. Market Trends and Expectations |
4.2.2.1. Worst case scenario |
4.2.2.2. Base Case Scenario |
4.2.2.3. Best Case Scenario |
4.2.3. Drivers and Barriers |
4.3. France Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.3.1. Market Progression (Futuristic) |
4.3.2. Market Trends and Expectations |
4.3.2.1. Worst case scenario |
4.3.2.2. Base Case Scenario |
4.3.2.3. Best Case Scenario |
4.3.3. Drivers and Barriers |
4.4. Germany Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.4.1. Market Progression (Futuristic) |
4.4.2. Market Trends and Expectations |
4.4.2.1. Worst case scenario |
4.4.2.2. Base Case Scenario |
4.4.2.3. Best Case Scenario |
4.4.3. Drivers and Barriers |
4.5. Italy Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.5.1. Market Progression (Futuristic) |
4.5.2. Market Trends and Expectations |
4.5.2.1. Worst case scenario |
4.5.2.2. Base Case Scenario |
4.5.2.3. Best Case Scenario |
4.5.3. Drivers and Barriers |
4.6. Spain Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.6.1. Market Progression (Futuristic) |
4.6.2. Market Trends and Expectations |
4.6.2.1. Worst case scenario |
4.6.2.2. Base Case Scenario |
4.6.2.3. Best Case Scenario |
4.6.3. Drivers and Barriers |
4.7. Japan Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.7.1. Market Progression (Futuristic) |
4.7.2. Market Trends and Expectations |
4.7.2.1. Worst case scenario |
4.7.2.2. Base Case Scenario |
4.7.2.3. Best Case Scenario |
4.7.3. Drivers and Barriers |
4.8. China Eastern Equine Encephalitis (EEE) Market Forecast 2022-2032 |
4.8.1. Market Progression (Futuristic) |
4.8.2. Market Trends and Expectations |
4.8.2.1. Worst case scenario |
4.8.2.2. Base Case Scenario |
4.8.2.3. Best Case Scenario |
4.8.3. Drivers and Barriers |
4.9. Key Expected Milestones (world-wide) Impacting the Market |
5. Competitive Landscape |
5.1. Pipeline Therapies Overview |
5.1.1. Phase III Therapies |
5.1.1.1. Current Status |
5.1.1.2. Trial details, results |
5.1.1.3. Approval Timeline |
5.1.1.4. Likelihood of approval |
5.1.1.5. Expected Product Positioning |
5.1.1.2. All other Phase III Therapies ….. |
5.1.1.3. Attribute Analysis of Phase III molecules |
5.1.2. Phase II and Phase I/II Therapies |
5.1.2.1. Current Status |
5.1.2.2. Trial details, results |
5.1.2.3. Approval Timelines |
5.1.3. List of active Pre-clinical Therapies |
5.1.3.1. Status in Eastern Equine Encephalitis (EEE) |
5.1.3.2. Company positioning |
5.1.3.2. All other pre-clinical therapies |
5.1.4. List of Inactive/discontinued assets |
5.1.4.1. Business impact of discontinuations on current pipeline |
5.1.5. Potential winners from Eastern Equine Encephalitis (EEE) Pipeline |
5.1.5.1. Potential Blockbusters across the pipeline |
6. Regulatory/Approval Scenario |
6.1. Regulatory/Approval Framework in US |
6.1.1. Policy Framework |
6.1.2. Payer Expectations |
6.2. Regulatory/Approval Framework in UK |
6.2.1. Policy Framework |
6.2.2. Payer Expectations |
6.3. Regulatory/Approval Framework in France |
6.3.1. Policy Framework |
6.3.2. Payer Expectations |
6.4. Regulatory/Approval Framework in Germany |
6.4.1. Policy Framework |
6.4.2. Payer Expectations |
6.5. Regulatory/Approval Framework in Italy |
6.5.1. Policy Framework |
6.5.2. Payer Expectations |
6.6. Regulatory/Approval Framework in Spain |
6.6.1. Policy Framework |
6.6.2. Payer Expectations |
6.7. Regulatory/Approval Framework in Japan |
6.7.1. Policy Framework |
6.7.2. Payer Expectations |
6.8. Regulatory/Approval Framework in China |
6.8.1. Policy Framework |
6.8.2. Payer Expectations |
7. Clinical Trial Assessment – Current and Future Paradigm |
7.1. Distribution of Primary Endpoints across trials |
7.2. Distribution of Secondary Endpoints across trials |
7.3. Evolution and acceptance of surrogate endpoints |
7.4. Key Investigator initiated trials |
7.5. Attrition analysis |
7.5.1. Suspended/Discontinued Assets |
7.5.2. Failed Trials, Reasons and Business Impact |
7.5.3. Terminated Trials, Reasons and Business Impact |
7.5.4. Withdrawn Trials, Reasons and Business Impact |
7.6. Trial enrollment scenario and challenges |
7.7. Clinical Trial Guidance (across geographies) |
8. Thelansis Commentary |
8.1. Key Unmet needs in Eastern Equine Encephalitis (EEE) |
8.2. Possible Best-case Clinical Trial Strategies |
8.3. Possible Best Case Targeted Product Profile (TPP) |
8.4. Possible Best-case Market positioning strategies |
8.5. Possible Best-case Market Access Strategies |
8.6. Possible Best-case LCM Strategies |
8.7. Overall View on Eastern Equine Encephalitis (EEE) Market in Dollar Value |
9. Report Methodology |
9.1. Secondary research |
9.2. Primary research |
9.3. Data collation |
9.4. Insight Generation |
10. About Thelansis |
10.1. Our Capabilities |
10.2. Our Services |
10.3. Our Contacts |
10.4. Disclaimer |